Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

نویسندگان

  • Debra L McCaffrey
  • Son C Nguyen
  • Stephen J Cox
  • Horst Weller
  • A Paul Alivisatos
  • Phillip L Geissler
  • Richard J Saykally
چکیده

The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN- ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorptive Removal of Cr(VI) and Cu(II) Ions from Water Solution using Graphene Oxide-Manganese Ferrite (GMF) Nanomaterials

Chromium (Cr) and copper (Cu) are heavy metals known for their dangerous effect towards human health and could enter into human body mainly through ingestion. Over the years, different treatment methods have been used to eliminate heavy metal from raw water source and these include (co)precipitation, coagulation/flocculation, adsorption and ion- exchange. Nonetheless, adsorption is the most pro...

متن کامل

Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces.

Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, ...

متن کامل

Ions at Aqueous Interfaces

Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close co...

متن کامل

Strong surface adsorption of aqueous sodium nitrite as an ion pair

We describe the first detailed experimental characterization of surface adsorption of an aqueous ion pair and quantify the unusual surface behavior of sodium nitrite, a ubiquitous component of natural waters. The onset of unusually strong adsorption at concentrations as low as ca. 0.1 M resembles the controversial ‘Jones–Ray Effect,’ wherein 13 salts exhibited surface tension minima in the mill...

متن کامل

Measurement of Bromide Ion Affinities for the Air/Water and Dodecanol/Water Interfaces at Molar Concentrations by UV Second Harmonic Generation Spectroscopy

Recent experimental and theoretical work has demonstrated that certain anions can exhibit enhanced concentrations at aqueous interfaces and that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. UV second harmonic generation resonant with the bromide charge-transfer-to-solvent band and a Langmuir adsorption mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 51  شماره 

صفحات  -

تاریخ انتشار 2017